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This article gives an approximate solution of a two-dimensional problem on the biaxial 
tension of a thick plate (plane strain) made of a strain-hardening elastoplastic material 
and containing a circular hole. The theory of plastic flow with transcendental strain- 
hardening proposed by A. Yu. Ishlinskii [i] is used. The solution is obtained by the small 
parameter method developed for elastoplastic problems of the theory of ideal plasticity [2]. 

L. A. Galinyi [3] examined the biaxial tension of a thick plate made of an ideal elasto- 
plastic material and containing a circular hole. It was shown in [2] that two approximations 
are sufficient to describe the exact solution. Here we determine two approximations for the 
same problem with allowance for strain-hardening, and we offer estimates of the effect of 
strain-hardening on the plastic behavior of the material. 

i. In accordance with the theory of translational strain-hardening [I], we can write 
the loading function for the case of plane strain as follows in polar coordinates r and e 

P P 2 P 2 [~r--Oo--C(er--%)] +4('ro--Cero) =4k2, (1.1) 

where Or, o0, ~r8 are stress components; e~, e~, e~o are plastic strain components; c is the 

strain-hardening parameter; k is the plastic limit. 

The total-strain components er, e0, er0 are made up of the elastic and plastic components: 

_ e e p (e r, e O, ero ) - -  ( er, e~, ero ) -{- ( er , e~, ePro ) ,  (1.2) 

where e~, eo,e e er0 are components of elastic strain. 
The elastic strains will be assumed to be incompressible; the plastic strains are in- 

compressible by virtue of the associative law of plastic flow used below. In the case of 
plane strain, we have the relations 

t i 
~ = - e~  =--~- (,,, - -  % ) ,  eT-o = "-~" ~ , 0 ,  

where G is the shear modulus. It follows from the associative flow law that 

dePr - -  de~ . de~o 
de p = O, d ~  + ~ o 

(1.3)  

(1.4) 

Integrating the first equation of (1.4), we find that the sum e~ + e~ is independent of 

the load parameter. If plastic strains are absent at the initial moment of time, then 

e~+e~ =0. (1.5) 

In accordance with (1.2), (1.3), and (1.5), we have the following condition of incompressibility 
for the total strains 

e r + e 0 = O. (1.6) 
We have the following relations for the total-strain components 

Ou I Ov u i [ 0 fv\ i au 1 (1.7) 
e,= s0 +v, . 

PP. 

Voronezh. Translated from Zhurnai Prikiadn-oiMekhaniki i Tekhnicheskoi Fiziki, No. 6, 
158-163, November-December, 1985. Original article submitted August i0, 1984. 

908 0021-8944/85/2606-0908509.50 �9 1986 Plenum Publishing Corporation 



where u and v are components of the displacement in the radial and circumferential directions. 

First we will examine the elastoplastic equilibrium of a thick-walled axisymmetric tube 
of radii a and b (a < b) subjected to internal and external pressures P0 and p. It is 

obvious that in this case v = ere = ~r8 = 0. 

We will refer all quantities having the dimension of length to the radius of the boundary 
separating the elastic and plastic regions r s All quantities having the dimension of stress 
will be referred to the plastic limit k. We designate 

a = a/r s, ~ = b/r s, 9 =  r/rs, q o =  Po/k, 

q =  p/k, g o =  Or~k, xp0 = Tro/k. 

We keep the former notation for the dimensionless quantities ~0, c, G, u, and v. In the 
elastic zone of the tube (i <_ p <_ $) we will have [4] 

132 B~ ~ B~ ~ ( 1 . 8 )  
~Og~ e 0 = - e  0 -  2Gp~, u = = ~  (A, B:--const) .  

The boundary conditions: 

%Ip=~ = --%, %Ip=~ = --q" (1.9) 

In the plastic zone (u ~ p ~ i), in accordance with (i.i) we write 

g0--%--c(4--@ 2., (1.10) 

where < is the sign of the expression on the left side. 

We find the following from the condition of continuity of the stress components at p = I, 
the second boundary condition of (1.9), and (i.i0) 

A ='q+B, B : z/~ 2. (i. Ii) 

Compressibility condition(l.6) is valid everywhere: in the elastic and plastic zones; 
it follows from this that the expressions for the components of the displacements and strains 
(1.8) are valid in both zones. Then, considering (1.2), (1.3)~ and (1.8)-(1.11), we obtain 
the following from the equilibrium equations [3] 

Gu F . p c 1 t 

G~ p c i l 

The condition of continuity of the stress components with p = 1 gives an equation 
linking the difference q - q0 and the radius rs: 

• - -qo  + 2G(t  21n~)  + ( 1 . 1 2 )  _ q  - -  . 

It follows from (1.12) that < = sign (q0 - q)- When c = 0, Eq. (1.12) coincides with the 
equation obtained for an ideally elastoplastic material [2]. In the case of tension of a 
plane with a circular hole $ § =, Eq. (1.12) iswritten as 

c 

(2G + c) l qo - - q I - -  2G (l - -  21na)  - - -  ~ =0. (I.13) 

If c << i, then by using (1.13) and representing the equation of the boundary between 
oo 

the elastic and plastic zones in the form r s= ~ c~r(sO , we obtain 

2 0r ' 

( ) 0~2) t)~ 1) 1 a rs 
") ' ~ Ps r~o) " 

= ~ 4 1 ) -  ~ e  % ~(-~, ~(o_ 
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The subscript 0 with ~ will henceforth be omitted. Everywhere below, we take the radius 
of the boundary between the elastic and plastic zones for an ideal elastoplastic material 

r(~) as the characteristic length scale. 

2. We will examine the biaxial tension of an infinite plate with a circular hole of 
radius a which is subjected at infinity to mutually perpendicular tensile forces Pl and P2. 
Meanwhile, a normal pressure P0 acts on the contour of the hole. We will seek a solution 
by the small parameter method [2], assuming that the plastic zone completely envelops the 
interval contour. 

We assume that 

c = ~c*, ( p l  - -  p 2 ) ~ k  = 5p*, 

w h e r e  ~ << l ,  w h i l e  c*  a n d  p* a r e  c o n s t a n t s  t a k i n g  v a l u e s  f r o m  0 t o  l .  A t  p* = 0 a n d  c* = l ,  
we h a v e  t h e  p r o b l e m  e x a m i n e d  a b o v e .  A t  c*  = 0 a n d  p* = l ,  we h a v e  t h e  p r o b l e m  e x a m i n e d  i n  
[ 2 ] .  

All the stress, strain, and displacement components will be sought in the form of 
series in powers of 6: 

(Oij , eij , u, v) = E ~n ( ~ ) ,  e(~) ' u(n) y(n)): ( 2 . 1 )  

When 6 = 0, the plate is in an axisymmetric state v (~ e(d~ =~%)=0. Inserting (2.1) into 
(I.I) and equating the terms with identical powers of 6, we obtain 

%o) _ o(o) ---- 2• 0 (1)o - -  0(1)0 - -  C* k~O(O(~ - -  e (O)p/p ] = O, 

. [~(o 2) - o g2) - c* (e(o 1)p - e g ' P ) ]  + (*gg))~ - -  o .  

A f t e r  l i n e a r i z a t i o n ,  E q s .  ( 1 . 4 )  a n d  ( 1 . 6 )  t a k e  t h e  f o r m  

e(n) -~ - "e (n) =0 ,  r~ 9 ' 0 ,  e(% ) = 0 ,  ( de(~ - -  de(p O)p) . ( 1 , -  9~do(1)P ~pO - -  ~ p O  ' 

de(O)P de(O)P'~(T(2) * (1)P~ ~- (de(1)P "de(1)P)T( lo '~ .2~e(2,P 0 .-- p 7~, pO --c %0 ] ~ O0 " 

We have the following for an infinite plate in the zeroth approximation [2] (K = i) 

(2.2) 

( 2 . 3 )  

ogO, .  = - % + 2 _ -  . 2 ,  = o ,  

Pl + P~ o(~ / t T~oe)e = O, where q _ 2k 
~(oO)q = q T d '  

( 2 . 4 )  

Here and below, the stress and displacement components have the superscript e in the elastic 
zone and p in the plastic zone. Everywhere in the plate 

�9 u (o)=2_~ ,  e(oO) __Jo) 1 ( 2 . 5 )  
-- 2Gp~. 

The boundary between the elastic and plastic zones in the zeroth approximation is deter- 
mined by the first equation in (1.14). 

Let us determine the first approximation. Plastic strains should be found in accordance 
with the second equation of (2.2). From (1.2), (1.3), and (2.5) 

By virtue of linearity, the equilibrium equations retain their form for any approximation: 

0(o ") + ~(")  
ap - -  ~ p ao =~ 

&~(p~) t ~-o~Mn) , ~~ 0 
+ T - ~ - + - f i -  = �9 
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Equations (2.7) can be satisfied by assuming 

o(pn ) =  t 0~l) (n) , . i  0"cD (~O 
p 0p ~ p~ .O0" ' 

O(o.) 0~"~_.~("), (,,) 0 ( i  0(I)(") / 
o,o "~oo = - 7f k--f" --~-/" 

( 2 . 8 )  

[2] 

From (2.2), (2.6), and (2.8) we obtain 

02ci) (1) loci) (1) t 0 2 r  (1) c * { i _ _ _ i  ~ ( 2 . 9 )  
0p~ --  p 0p - - p  2 O0 - G ~p2 ] 

The boundary conditions on the inside contour of the plastic zone have the form (p = a) 

~(o~)~ = ~ ) ~  = o, ~ >/t. ( 2 .  l O )  

I n  a c c o r d a n c e  w i t h  ( 2 . 9 ) ,  ( 2 . 8 ) ,  a n d  ( 2 . 1 0 ) ,  we f i n d  

o(n~ c* ( _ ~  ~ P )  ( 2 . 1 1 )  = m -  -7-2!'~ ' 

The boundary conditions at infinity have the form [2] 

~(ol) ~" = - -  p* cos 20, "6p~o )0r = p* sin 20; ( 2 . 1 2 )  

o(n)~' = ~i~)~176 : O, n > / 2  (2.13) 

The compatibility condition for the strain components in the first approximation yields 

.(1), - -  n ( l ) p  ~(1)e __ ~(~)p at p = i. ( 2 . 1 4 )  

Using boundary conditions (2.12) and (2.14), we write the expressions for the stress and 
displacement components in the elastic zone: 

= % - - ( I - - V - ~ V ) C 0 S 2 0 ,  

(~(o Oe : - -  -~- + p* t + cos 20, ~ ~ -  - -  sin 20, 

u(1)~=--~-~.~ - p+ p -- 

--(5 ) v 0)" = ~ - -  p +  sin20, r~e a o = - ~ -  - - l + 2 1 n ~  . 

(2.15) 

F 
Using the compatibility conditions ~(1)d---dOl=0 with p = i and following [2] 

L~U - dp ~ j 
we obtain 

p ? ) :  ao ---~- + p* cos 20. (2.16) 

From the displacement compatibility condition [2], which reduces to the form 

u(1)e : U(1)P$ v(1)e : V(1)P a t  p : l ,  

and from Eqs. (2.15) we obtain the boundary conditions for the displacements in the plastic 
zone 

a o p* p* U (1)p : "~--~---G--  cos20, v O)p -- G sin20. ( 2 . 1 7 )  
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From (2.3) and (2.11) we have 

e(t) -t- e (1) = O, ,tepl)OP =.0. O ~ 0 
Oe(:)P pO 

Following [2], we note that since ~0~a~ O~ (X is the load parameter), 

accordance with (2.17), e(~)P is independent of the change in load. 

the plastic strains are equal to zero, which means 

e(~)p _ .(1) t_~ ~(t)p _ e(t) O. 
p0 - - ~ o 0 - -  2G ~pO - -  pO = 

W i t h  a l l o w a n c e  f o r  ( 1 . 7 ) ,  E q s .  ( 2 . 1 8 )  a n d  ( 2 . 1 9 )  t a k e  t h e  f o r m  

(2.18) 

then in 

At the initial moment 

( 2 . 1 9 )  

Ou (i)p u (1)p I Ov (1)p Ov (1)p v (1)p "t  Ou (t)p 
Op + - - ( - - +  p aO - -0 ,  Op F + - P  O--ff-=O" ( 2 . 2 0 )  

Assuming u(1)P=- t a~ (I) aT (1) (2.20) p a0 , v(t)P=' ap , we obtain the following from the second equation of 

02~I f(1) t '  0~I y(1) t 02~ (1) 
ap ' ~ ' -  p ap p~ 002 = 0 .  ( 2 . 2 1 )  

have 
Using the solution of Eq. (2.21) presented in [2] and boundary conditions (2.17), we 

% 2p* c o s ( t - -  v(t) p 2p* [ ~ ~ 

e(1) ~0 = -  = ~ , ~  00 , 

w h e r e  t = ~ 3  i n  p .  

T h u s ,  t h e  f i r s t  a p p r o x i m a t i o n  h a s  b e e n  f o u n d  c o m p l e t e l y .  I n  c o n t r a s t  t o  t h e  s o l u t i o n  
f o r  a n  i d e a l  e l a s t o p l a s t i c  m a t e r i a l  [ 2 ] ,  t h e  e x p r e s s i o n  f o r  t h e  b o u n d a r y  b e t w e e n  t h e  e l a s t i c  
a n d  p l a s t i c  z o n e s  ( 2 . 1 6 )  c o n t a i n s  a c o n s t a n t  - a 0 / 2  - w h i c h  c h a r a c t e r i z e s  t h e  " s l o w i n g "  o f  
p r o p a g a t i o n  o f  t h e  p l a s t i c  z o n e  d u e  t o  s t r a i n - h a r d e n i n g .  

3 .  L e t  u s  p r o c e e d  t o  t h e  d e t e r m i n i n g  o f  t h e  s e c o n d  a p p r o x i m a t i o n .  
we find 

oy),_ c, 

In accordance with (1.2), (1.3), (2.11), and (2.22), we will have 

a 0 4p* . " 

(2.22) 

From (2.2) and (2.11) 

(3.1) 

(3.2) 

After insertion of (2.8) and (3.2) into (3.1), we obtain an equation analogous to (2.9). 
By solving this equation using Eqs. (2.8) and by taking boundary conditions (2.10) into 
account, we find 

where 

o~)p c, c, 0 i _ ~ ) + %  
-- ~)] "]- ~-~ [sm ' -- 'i sin (t + 6) -- sin to cos tl] cos 20, 

4p* [ o(~)p_o(2).+_ c* - ~  ~ r 0 - -  O G ~-~ l - -  - T s i n ( t - ~  , 

T(2)p ~ 4 c ' p *  cos ~ -- ~ 

t o = ~ /~ ln  a; t 1 ],/Y In p -~.  

The s t r e s s  c o m p a t i b i l i t y  c o n d i t i o n s  i n  t h e  s e c o n d  a p p r o x i m a t i o n  h a v e  t h e  f o r m  [2 ]  

(3.3) 
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- ~ v s  ~2 + ~ - ~  P~') =0. (3 .4 )  
dp" 

The c o m p a t i b i l i t y  c o n d i t i o n s f o r  o 8 and ~p8 a re  s i m i l a r .  Cons ide r ing  ( 3 . 3 ) ,  ( 2 . 4 ) ,  
( 2 . 1 1 ) ,  ( 2 . 1 5 ) ,  and ( 2 . 1 6 ) ,  we o b t a i n  t h e  f o l l o w i n g  from (3 .4 )  (p = 1) 

O(2)e = b o J - C l C ~ 1 7 6  "oO*(2)e -- cz sin 20 --  4p*Z sin (3 .5 )  
where 

a o c* t 

c a : 2p* [2a 0 -  G ( Ins - - s in  2 t 0+ ~ s i n 2 t 0 )  ]. 

In  acco rdance  w i t h  boundary c o n d i t i o n s  (3 .5 )  and (2.13), we have t he  f o l l o w i n g  fo r  t he  
second a p p r o x i m a t i o n  in  t he  e l a s t i c  zone 

+ co 40, (3 .6 )  p" 

3 10 
= oo 2o_ ,  

v P W 

,(2)e~o _ ~P '~{M-- - -~ ) s inZO+2p*2(~- -~) s in40 '  

where M = c I -c2; N = c I - 2c 2. We find the following from the compatibility condition 
for 08 with p = 1 in the second approximation 

s = - - 8 ~ - 4 - - ~ o - - p *  --~-- lncc--sin2to + ~ s i n 2 t  o cos20 - 34 p*~ (l - cos 40). (3 .7 )  

We will make several observations. Equations (2.11), (2.15), (2.16), (2.22), (3.3), 
(3.6), and (3.7) make it possible to evaluate the effect of strain-hardening. At c* = 0, we 
have the solution presented in [2]. At p* = 0, Eqs. (2.16) and (3.7) coincide with (1.14). 

We should point out that Eq. (2.3) includes differentials of the strain components. 
In the given case, de~j % dlSe~j/81. In problems similar to those examined above, it is 

convenient to take p as the load parameter. Integration over the plastic strains should be 
done from zero to the running value of the plastic strains, while integration over p should 
be done from unity to the running value of p. 
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